# ROBUST SERIES BATTERY CHARGERS TECHNICAL MANUAL





| Introduction    |                                                                                 | 3  |
|-----------------|---------------------------------------------------------------------------------|----|
| 1. Modes        |                                                                                 | 4  |
| 1.1             | Common features for all modes                                                   | 4  |
| 2. Configurabl  | le items                                                                        | 5  |
| 2.1             | Charging parameters                                                             | 5  |
| 2.2             | Parallel control                                                                | 6  |
| 2.3             | Series operation                                                                | 6  |
| 2.4             | IdcLimit                                                                        | 6  |
| 2.5             | UdcLimit                                                                        | 7  |
| 2.6             | Remote input                                                                    | 7  |
| 2.7             | Remote output                                                                   | 7  |
| 2.8             | Buttons F1 and F2                                                               | 7  |
| 3. Editing char | rging configuration                                                             | 8  |
| 4. Algorithms   |                                                                                 | 11 |
| 4.1             | LK10-06 freely ventilated lead-acid                                             | 11 |
| 4.2             | LK10-18 freely ventilated lead-acid, using ionic mixing                         | 12 |
| 4.3             | LK20-09 sealed gel/AGM lead-acid                                                | 13 |
| 4.4             | LK10-05 freely ventilated lead-acid, with constant voltage maintenance charging | 14 |
| 4.5             | PP100 freely ventilated lead-acid, with constant voltage maintenance charging   | 15 |
| 4.6             | PP101 sealed gel/AGM lead-acid, with constant voltage maintenance charging      | 16 |
| 4.7             | PP102 sealed gel/AGM lead-acid "Sonnenschein"                                   | 17 |
| 4.8             | LK23-03 "Evolution"                                                             | 17 |
| 5. CAN remote   | e control                                                                       | 18 |
| 5.1             | Node-ID                                                                         | 19 |
| 5.2             | Bit rate                                                                        | 19 |
| 5.3             | Setting mode via CAN                                                            | 20 |
| 5.4             | Software version                                                                | 20 |
| 5.5             | Bootloader version                                                              | 21 |
| 5.6             | Power version                                                                   | 21 |
| 5.7             | Remote output                                                                   | 22 |
| 5.8             | Charger mode                                                                    | 22 |
| 5.9             | Charging parameters                                                             | 22 |
| 5.10            | Measurements or monitoring                                                      | 22 |
| 5.11            | Fixed power supply mode                                                         | 23 |
| 5.12            | Protocol power supply mode                                                      | 23 |
| 5.12.1          | Power output                                                                    | 24 |
| 5.12.2          | Measurements                                                                    | 25 |
| 5.13            | Power supply mode                                                               | 25 |
| 5.13.1          | Power output                                                                    | 25 |
| 5.13.2          | Measurements                                                                    | 26 |
| 5.13.3          | CAN safety timer                                                                | 27 |
| 5.13.4          | Power supply mode example                                                       | 27 |
| 5.13.5          | Robust series and PAP3200/CAN – power supply mode differences                   | 28 |
| 7. Options and  | d accessories                                                                   | 33 |
| 7.1             | Radio module                                                                    | 33 |
| 7.2             | Battery temperature sensor and voltage sense                                    | 33 |
| 7.3             | CAN cable                                                                       | 34 |
| 7.4             | CAN cable with 9-pin D-sub socket                                               | 34 |
| 8. Dimensions   | 5                                                                               | 35 |

# Introduction

For hardware specifications, see separate documents "Specification". For installation and operation instructions, see "Installation and user manual". This document presents the remaining features of Robust series chargers, configuration, CAN remote control, connections, and options.

This document applies to typical hardware versions. Special HW versions for specific applications are not documented in this manual. This document applies to standard software type 11613002 revision 5-13, if not otherwise stated. Special SW types for specific applications are not documented in this manual.

Information is subject to change without notice.

# 1. Modes

The charger has several operation modes, for example, charger, fixed power supply, and several remote-controlled power supply modes.

**Charger** mode is a standalone device, which controls the battery charging process according to selected internal algorithm and other charging parameters. Note that charging lithium battery requires BMS (Battery Management System) for safety reasons.

**Fixed power supply** (SDO power supply) mode is a standalone power supply with configurable nonvolatile voltage and current settings. In this mode, the charger outputs power immediately after startup. Configuration items UdcLimit and IdcLimit are used. This mode uses a fast HW control loop, which is stable for almost all loads.

**Protocol power supply** (PDO power supply) mode is a remote controlled power supply that provides setting and measurement messages. It is necessary to keep sending messages. If required CAN messages are not received, power output is switched off after some seconds. Note the involved SW control loop behavior. Constant voltage type load, for example, battery, is needed for output to be stable. SW loop has a slow response to load changes. Thus, this mode might be better described as CAN controlled battery charger.

**Power supply** mode is a remote controlled power supply that provides close compatibility to PAP3200/CAN product family. This mode uses a fast HW control loop, which is stable for almost all loads. This feature is available in software revision 7 and later.

# 1.1 Common features for all modes

Robust series chargers feature dynamic power limit. This means maximum voltage and maximum current can be set at the same time. One of them can be output at one time. Depending on load, output operates on voltage, cur,rent or power limit. Limits are either maximums of the power version or smaller values set by a charging algorithm, remote control message,s or configured limits.

The STOP button switches output off both in charger and power supply modes. Pressing STOP again restores output.

Remote input can be configured to start/stop functionality. Power output is on if remote input is active (closed contact).

# 2. Configurable items

Some settings can be configured using the front panel and CAN commands. Almost all settings can be configured usan ing optional radio module. All settings can be set at the factory.

| Configuring method | Documented in:                                                     |
|--------------------|--------------------------------------------------------------------|
| Front panel        | chapter "Editing charging configuration"                           |
| CAN bus            | chapter "CAN remote control"                                       |
| Radio              | Access Service Tool documentation                                  |
| Factory setting    | ask from your supplier. Convenient if your order large quantities. |

Operation mode can be configured via all four methods. Operation modes are described in chapter "Modes". Other items are listed below.

# 2.1 Charging parameters

This group of settings includes algorithm, battery capacity, cell count, cable resistance and base load. These items are applied only in charger mode. These settings can be set also using CAN bus. See chapter "CAN remote control".

## Algorithm number

| Configurable via | Front panel: yes | CAN: yes | Radio: yes | Factory setting: yes |
|------------------|------------------|----------|------------|----------------------|
| Default value: 1 |                  |          |            |                      |

Algorithm number is unique identifier of algorithms within Access and Robust series of chargers. See chapter "Algorithms" for available algorithms and numbers.

# **Battery capacity**

| Configurable via  | Front panel: yes | CAN: yes | Radio: yes | Factory setting: yes |
|-------------------|------------------|----------|------------|----------------------|
| Defaulturalura FO |                  | 20001    |            |                      |

Default value: 50, unit: Ah, range: 50 ... 2000<sup>1</sup>

A list of predefined values between 50 and 800 is available using the front panel. See chapter "Editing charging configuration". While these are often sufficient, battery capacity can be set freely using other methods. Accurate capacity setting ensures optimal charging process.

<sup>1</sup> Since SW revision 11, range is 1 ... 9999 Ah. When setting low battery capacity, note the charger output accuracy.

# Number of cells

| Configurable via     | Front panel: no      | CAN: yes     | Radio: yes       | Factory setting: yes |
|----------------------|----------------------|--------------|------------------|----------------------|
| Default value: accor | ding to nominal volt | age of the c | harger: for exam | ple, 12 cells for    |
|                      |                      |              |                  |                      |

nominally 24 V charger, 24 for nominally 48 V charger, unit: -, range: 6 ... 501 Number of cells can be configured to a lower value than the nominal. For example, 12 V battery can be charged using nominally 24 V charger. Naturally meaningful maximum depends on the power version. <sup>1</sup> For SW revision 11 and later: range is 1 ... 999 cells. When setting low number of cells, note the charger output accuracy and fixed battery detection low limit of 6 V (15 V for power version 48 V 60 A).

# **Base load**

| Configurable via     | Front panel: no     | CAN: yes | Radio: yes | Factory setting: yes |
|----------------------|---------------------|----------|------------|----------------------|
| Default value: 0, un | it: mA , range: 0 6 |          |            |                      |

Eventual current consumption of a load parallel to battery during charging can be compensated with this parameter. Current should be constant so eventual Ah counters in the algorithm operate reliably.

# **Cable resistance**

| Configurable via     | Front panel: no    | CAN: yes | Radio: yes | Factory setting: yes |
|----------------------|--------------------|----------|------------|----------------------|
| Default value: 0, un | it: mOhm, range: 0 | . 99     |            |                      |

Voltage drop in cabling between charger and battery can be compensated with this parameter. Depending on algorithm, this can improve charging process efficiency. Be careful not to overcompensate as this can result in unstable operation and too high cell voltages.

#### Parallel control 2.2

| Configurable via     | Front panel: yes | CAN: no | Radio: yes | Factory setting: yes |
|----------------------|------------------|---------|------------|----------------------|
| Default value: off r | ange: off/on     |         |            |                      |

Default value: off, range: off/on

This setting enables group of chargers, connected in parallel, to deliver large current. When value "on" is selected, this charger (master) controls other Robust series chargers (slaves) over CAN bus. Other chargers in the group are configured to mode: charger or protocol power supply, parallel control: off. CAN Node-IDs for slaves are automatically set. Software revision 6 or later is required for this feature.

This kind of parallel operation is available in charger and protocol power supply modes. Up to five chargers (1 master + 5 slaves) can be connected. Eventual optional connections should be made to the master charger (with parallel setting "on"). In charger mode, master charger controls other chargers. In protocol power supply mode, group (master) appears as one charger to CAN system controller.

#### Series operation 2.3

Series operation for large output voltage is not supported by Robust software. Connecting Robust chargers in series is not recommended.

#### 2.4 IdcLimit

| Configurable via   | Front panel: no    | CAN: yes   | Radio: yes     | Factory setting: yes       |
|--------------------|--------------------|------------|----------------|----------------------------|
| Default value: may | current of the new | or vorsion | unit: A range: | 0 may surrent of the newer |

Default value: max. current of the power version, unit: A, range: 0...max. current of the power version. Parameter IdcLimit defines maximum DC current output. In case of other DC current limits, for example that calculated by charging algorithm or CAN messages in protocol power supply mode, lowest limit defines maximum current output. IdcLimit is not applied in power supply mode. IdcLimit is also the current setting in fixed power supply mode. See chapter "CAN remote control" - "fixed power supply mode" for CAN messages.

# 2.5 UdcLimit

| Configurable via | Front panel: no | CAN: yes | Radio: yes | Factory setting: yes |
|------------------|-----------------|----------|------------|----------------------|
|                  |                 |          |            |                      |

Default value: nominal voltage of the power version, unit: mV, range: 0...max. voltage of the power version. UdcLimit is the voltage setting in fixed power supply mode. See chapter "CAN remote control" -" fixed power supply mode" for CAN messages.

# 2.6 Remote input

| Configurable via                                              | Front panel: yes | CAN: yes* | Radio: yes | Factory setting: yes |  |
|---------------------------------------------------------------|------------------|-----------|------------|----------------------|--|
| Default value: no function range: no function start/stop stop |                  |           |            |                      |  |

When value "start/stop" is configured, active remote input (closed contact) is required for power output.

Value "stop" is not documented yet.

This setting is valid in all modes.

Using front panel, values "no function" and "start/stop" can be selected.

Physical connection is documented in chapter "Connections".

\* Since software revision 11. See chapter "CAN remote control" for CAN messages.

# 2.7 Remote output

| Configurable via     | Front panel: no       | CAN: yes*     | Radio: yes      | Factory setting: yes            |
|----------------------|-----------------------|---------------|-----------------|---------------------------------|
| Default value: "no f | unction" in SW revisi | on 6 and earl | ier, "mains" in | SW revision 7 and later, range: |

no function, alarm, phase, BBC, water, air pump, mains.

When value "alarm" is configured, remote output relay is activated during all alarms.

When value "mains" is configured, remote output relay is activated whenever charger is mains powered. For other configuration possibilities, see Access documentation.

Remote output can be connected also to button F1 or F2. Button connection overrides other functions using the remote output.

This setting is valid in all modes.

Physical connection is documented in chapter "Connections".

\* Since software revision 11. See chapter "CAN remote control" for CAN messages.

# 2.8 Buttons F1 and F2

| Configurable via                                                      | Front panel: no | CAN: no | Radio: yes | Factory setting: yes |  |  |  |
|-----------------------------------------------------------------------|-----------------|---------|------------|----------------------|--|--|--|
| Default value: no function, range: no function, equalize, remote out. |                 |         |            |                      |  |  |  |

When value "equalize" is configured, the button will trigger equalize charging. This function tells the charging curve to run an equalize charge. How the actual equalize charge is performed is defined in the charging curve, normally when the battery is fully charged. The button can be pressed at any time even if no battery is connected. When value "remote out" is configured, the button will toggle the remote output relay. Button connection overrides other functions using the remote output.

# **3. Editing charging configuration**

This chapter presents editing charging configuration using the front panel. Also, CAN-bus and optional radio module can be used, see separate chapters.

- 1. Disconnect battery.
- 2. Connect mains power.
- 3. Wait until blue LED lits. Within 20s, press STOP, and keep pressing for 10s. LEDs should flash shortly. Release STOP. Special configuration mode has been entered.
- 4. Press STOP to scroll down the list. List of items are in table below.
- 5. To set item on/off, press F1.



6. After you have selected algorithm and battery capacity (and eventual other selections), disconnect mains power. Configuration is automatically stored to non-volatile memory.

Following table applies to software revision 2 and later. Bold text in coloured areas indicates LED "on".

|    |     |        |       | 0    |         | Item                                                        |
|----|-----|--------|-------|------|---------|-------------------------------------------------------------|
| 1  | red | yellow | green | blue | s.green | algorithm 1 LK10-06 freely ventilated lead-acid (default)   |
| 2  | red | yellow |       | blue | s.green | algorithm 41 LK10-18 freely ventilated lead-acid, ionic mix |
| 3  | red |        | green | blue | s.green | algorithm 3 LK20-09 sealed gel/AGM lead-acid                |
| 4  | red |        |       | blue | s.green | algorithm 16 LK10-05 freely ventilated lead-acid            |
| 5  |     |        |       | blue | s.green | algorithm 17 PP100 freely ventilated lead-acid              |
| 6  |     |        | green | blue | s.green | algorithm 18 PP101 sealed gel/AGM lead-acid                 |
| 7  |     | yellow |       | blue | s.green | algorithm 19 PP102 sealed gel/AGM lead-acid "Sonnenschein"  |
| 8  |     | yellow | green | blue | s.green | algorithm 20 LK23-03 "Evolution"                            |
| 9  | red | yellow | green |      | s.green | capacity 50 Ah (default)                                    |
| 10 | red | yellow |       |      | s.green | capacity 75 Ah                                              |
| 11 | red |        | green |      | s.green | capacity 100 Ah                                             |
| 12 | red |        |       |      | s.green | capacity 125 Ah                                             |
| 13 |     |        |       |      | s.green | capacity 150 Ah                                             |
| 14 |     |        | green |      | s.green | capacity 200 Ah                                             |
| 15 |     | yellow |       |      | s.green | capacity 250 Ah                                             |
| 16 |     | yellow | green |      | s.green | capacity 300 Ah                                             |
| 17 | red | yellow | green | blue |         | capacity 350 Ah                                             |
| 18 | red | yellow |       | blue |         | capacity 400 Ah                                             |
| 19 | red |        | green | blue |         | capacity 450 Ah                                             |
| 20 | red |        |       | blue |         | capacity 500 Ah                                             |
| 21 |     |        |       | blue |         | capacity 550 Ah                                             |
| 22 |     |        | green | blue |         | capacity 600 Ah                                             |
| 23 |     | yellow |       | blue |         | capacity 700 Ah                                             |
| 24 |     | yellow | green | blue |         | capacity 800 Ah                                             |
| 25 | red | yellow | green |      |         | Charging mode                                               |
| 26 | red | yellow |       |      |         | Remote input, off -no function, on -start/stop              |
| 27 | red |        | green |      |         | CAN function                                                |
| 28 | red |        |       |      |         | Parallel control                                            |
| 29 |     |        |       |      |         | Battery monitoring unit control                             |
| 30 |     |        | green |      |         | Charging mode                                               |
| 31 |     | yellow |       |      |         | CAN Status                                                  |



#### Notes/description for some configurable items

#### Capacity

Select capacity that is nearest to the capacity of your battery, for example 200 Ah for battery with nominal capacity of 175 ... 225 Ah.

#### **Charging mode and CAN function**

Mode is set using combinations of list items:

| Mode                  | Set item           |     |
|-----------------------|--------------------|-----|
| Charger (default)     | 25, Charging mode: | off |
|                       | 27, CAN function:  | off |
|                       | 30, Charging mode: | off |
| Fixed power supply    | 25, Charging mode: | on  |
|                       | 27, CAN function:  | on  |
|                       | 30, Charging mode: | off |
| Protocol power supply | 25, Charging mode: | off |
|                       | 27, CAN function:  | on  |
|                       | 30, Charging mode: | off |
| Power supply          | 25, Charging mode: | off |
|                       | 27, CAN function:  | on  |
|                       | 30, Charging mode: | on  |

#### Remote input

Default value is "no function". When value "Start/Stop" is selected, active remote input (closed contact) is required for power output.

#### Battery monitoring unit control

Default setting is off. When optional radio module and battery monitoring unit are installed, charging process can be controlled by the battery monitoring unit. For more information, see Access documentation.

# 4. Algorithms

Verify compatibility of the algorithm with the battery manufacturer. Note that charging lithium battery requires BMS (Battery Management System) for safety reasons.

Notes for all algorithms:

- "Sealed" is a generic term for GEL and AGM types of lead-acid batteries, which are not freely ventilating to surrounding air.

- Current is indicated in terms of C, which is current compared to nominal capacity. For example, 0.2 C for 100 Ah battery is 20 A.

- There is an Ah counter and limit in almost all algorithms. If charger and battery are connected continuously (often called 'floating'), and there is enough base load, eventually charger will display alarm and switch DC power off. Floating applications are better served using fixed power supply mode with suitable voltage and current values.

# 4.1 LK10-06 freely ventilated lead-acid

## Algorithm number: 1



Charging phase "top fill" charges +15 % compared to charged Ah of main phase. Battery temperature compensation:

- voltage -3 mV / °C per cell, neutral at 30 °C

- current derated to zero in the range [-30 ... -35] and [+45 ... +60] °C

\* In maintenance phase, battery voltage is periodically checked. If it is below 2.17 V/cell, 2-minute 0.05 C current pulse is used.

# 4.2 LK10-18 freely ventilated lead-acid, using ionic mixing

### Algorithm number: 41

Ionic mixing current pulses are used to reduce charging time without using air pump.



Charging phase "top fill" charges +6 % compared to charged Ah of main phase. Battery temperature compensation:

- voltage -3 mV / °C per cell, neutral at 30 °C

- current derated to zero in the range [-30 ... -35] and [+45 ... +60] °C

\* In maintenance phase, battery voltage is periodically checked. If it is below 2.17 V/cell, 2-minute 0.05 C current pulse is used.

## NOTE

Algorithm LK10-04 (number 2) is replaced by algorithm LK10-18 (number 41) since SW revision 9. Algorithms are similar but top fill current pulses are longer and base current was changed from 0.05 C to 0.07 C.

## NOTE

In SW revision 11 automatic equalization was added. It starts 16 hours from charge start, uses 0.05 C current and runs for 3 hours.

# 4.3 LK20-09 sealed gel/AGM lead-acid

## Algorithm number: 3



Battery temperature compensation: none.

This algorithm has equalization built in. If battery is left connected to charger for 16 hours, a 30 h equalization phase runs with current 0.006 C and voltage 2.8 V/cell. This could be useful to perform equalizing over a weekend.

# 4.4 LK10-05 freely ventilated lead-acid, with constant voltage maintenance charging

## Algorithm number: 16



Charging phase "top fill" charges +15 % compared to charged Ah of main phase.

Battery temperature compensation:

- voltage -3 mV / °C per cell, neutral at 30 °C
- current derated to zero in the range [-30 ... -35] and [+45 ... +60] °C

# 4.5 PP100 freely ventilated lead-acid, with constant voltage maintenance charging



Battery temperature compensation:

- voltage -4 mV / °C per cell, neutral at 25 °C
- current derated to zero in the range [-30 ... -35] and [+40 ... +50] °C

#### NOTE

This algorithm uses low battery detection voltage: 0.5 V/cell. Be careful not to inadvertently use battery with smaller number of cells, for example 24 V charger for a 12 V battery.

# 4.6 PP101 sealed gel/AGM lead-acid, with constant voltage maintenance charging



Algorithm number: 18

Battery temperature compensation:

- voltage -4 mV / °C per cell, neutral at 25 °C

- current derated to zero in the range [-30 ... -35] and [+40 ... +50] °C

#### NOTE

This algorithm uses low battery detection voltage: 0.5 V/cell. Be careful not to inadvertently use battery with smaller number of cells, for example 24 V charger for a 12 V battery.

# 4.7 PP102 sealed gel/AGM lead-acid "Sonnenschein"

#### Algorithm number: 19



Battery temperature compensation:

- voltage -4 mV / °C per cell, neutral at 25 °C

- current derated to zero in the range [-30 ... -35] and [+40 ... +50] °C

## NOTE

This algorithm uses low battery detection voltage: 0.5 V/cell. Be careful not to inadvertently use battery with smaller number of cells, for example 24 V charger for a 12 V battery.

# 4.8 LK23-03 "Evolution"

## Algorithm number:20

For detailed information contact Enersys (ref: CDC-Evo 05). This algorithm is available in software revision 9 and later.

# 5. CAN remote control

For physical connection to CAN port, see chapter "Connections".

Robust series CAN communication is not CiA certified nor CANopen complete, but communication is based on CANopen and complies with selected parts of standard CiA 301. In the following presentation, basic knowledge about CAN and CANopen is assumed.

Frame: Standard CAN frame with 11-bit identifier Bit rate: 20 ... 1000 kbit/s Node-ID: 1 ... 127

Configurable items are accessed using CANopen SDO protocol. See "Node-ID" for examples of how CAN messages are built.

Nonvolatile settings are nonvolatile without separate save command, automatically written to flash. Therefore, for long lifetime, avoid sending excessive amounts of these messages. Most nonvolatile settings are active immediately, but some require restart.

# 5.1 Node-ID

This CANopen object is used to configure node-ID.

| Index | Sub-index | Format | Unit | Range | Default value | Item        |
|-------|-----------|--------|------|-------|---------------|-------------|
| 2057h | 01        | uint8  |      | 1127  | 1Dh*          | CAN Node-ID |
|       |           | -      |      |       |               |             |

\* Default node-ID is 1 in software revision 6 and earlier.

Changed CAN node-ID is nonvolatile, active immediately after response. This setting is applied in power supply modes. In charger mode, node-ID is automatically assigned, so configured node-ID is ignored.

Message to access node-ID is built according to CANopen SDO protocol:

CAN-ID: 600h + node-ID, DLC: 8, data[0]: according to CANopen, data[1-2]: OD index, data[3]: OD subindex, data[4]: node-ID. Unused bytes are ignored.

Example messages:

| CAN-ID | DLC | Data [07] (hex)         | Comment                             |
|--------|-----|-------------------------|-------------------------------------|
| 601h   | 8   | 40 57 20 01 00 00 00 00 | Read CAN node-ID                    |
| 581h   | 8   | 4F 57 20 01 01 00 00 00 | Response from charger: node-ID is 1 |

| CAN-ID | DLC | Data [07] (hex)         | Comment               |
|--------|-----|-------------------------|-----------------------|
| 601h   | 8   | 2F 57 20 01 02 00 00 00 | Write CAN node-ID 2   |
| 581h   | 8   | 60 57 20 01 01 00 00 00 | Response from charger |

## ΝΟΤΕ

The first data byte in SDO write operation is 2Fh for 1-byte object, 2Bh for 2-byte object and 23h for 4-byte object. For 4-byte object, also 22h can be used. Unused data in response might be filled with random data. CANopen uses little endian byte order.

# 5.2 Bit rate

This CANopen object is used to configure bit rate.

| Index | Sub-index | Format | Unit   | Range   | Default value | Item         |
|-------|-----------|--------|--------|---------|---------------|--------------|
| 5FFFh | 02        | uint16 | kbit/s | 201000* | 125           | CAN bit rate |

\* Values 20, 50, 125, 250, 500, 800 and 1000 are supported.

Changed bit rate is nonvolatile, active after restart. This feature is available in software revision 7 and later.

# 5.3 Setting mode via CAN

| Index | Sub-index | Format | Unit | Range | Default value | ltem         |
|-------|-----------|--------|------|-------|---------------|--------------|
| 2058h | 01        | uint8  |      | 03    | 0             | ChargingMode |
| 2056h | 01        | uint8  |      | 04    | 1             | CAN function |

Mode is defined by two CANopen objects:

For a mode, set these two objects to:

| Mode                    | ChargingMode | CAN function |
|-------------------------|--------------|--------------|
| Charger                 | 0            | 1            |
| Charger with CAN status | 0            | 4            |
| Fixed power supply      | 2            | 3            |
| Protocol power supply   | 0            | 3            |
| Power supply            | 3            | 3            |

Other combinations of values are reserved.

These settings are nonvolatile. Some mode changes are active immediately, some require restart. This feature is available in software revision 7 and later.

Charger with CAN status is available in software revision 11 and later.

# 5.4 Software version

Charger software version can be read using SDO objects:

| Index | Sub-index | Format | Unit | Range | Default | Item                           |
|-------|-----------|--------|------|-------|---------|--------------------------------|
|       |           |        |      |       | value   |                                |
| 2202h | 01        | uint32 |      |       |         | SW type; 11613002 for standard |
|       |           |        |      |       |         | SW. Does not change for the    |
|       |           |        |      |       |         | lifetime of the SW.            |
| 2202h | 02        | uint32 |      |       |         | SW revision. Incremented for   |
|       |           |        |      |       |         | new revisions.                 |

This feature is available in software revision 7 and later.

# 5.5 Bootloader version

| Index | Sub-index | Format | Unit | Range | Default | Item                                        |
|-------|-----------|--------|------|-------|---------|---------------------------------------------|
|       |           |        |      |       | value   |                                             |
| 2203h | 01        | uint32 |      |       |         | Bootloader type; 11617029 as standard.      |
| 2203h | 02        | uint32 |      |       |         | SW revision. Incremented for new revisions. |

Charger bootloader version can be read using SDO objects:

This feature is available in software revision 11 and later.

# 5.6 Power version

Charger power unit version can be read using SDO object:

| Index | Sub-index | Format | Unit | Range | Default<br>value | Item          |
|-------|-----------|--------|------|-------|------------------|---------------|
| 2059h | 01        | uint32 |      |       |                  | Power version |

At time of writing, defined values are:

- 0: 1100 W 24 V nominal 40 A maximum
- 1: 2300 W 24 Vnom. 80 A 2: 1100 W 36 Vnom. 22 A
- 3: 1100 W 48 Vnom. 20 A
- 4: 2300 W 36 Vnom. 53 A
- 5: 2300 W 48 Vnom. 40 A
- 6: 3000 W 24 Vnom. 105 A
- 7: 3000 W 48 Vnom. 60 A
- 200: 3000 W 280 Vnom. 520 Vmax. 10 A
- 201: 650 W (model 888) 24 Vnom. 28 A
- 202: 3000 W 96 Vnom. 30 A
- 203: 650 W (model 888) 48 Vnom. 14 A
- 205: 888 W (model 888) 24 Vnom. 35 A
- 206: 1100 W (model 888) 24 Vnom. 40 A
- 207: 888 W (model 888) 48 Vnom. 17 A
- 208: 1100 W (model 888) 48 Vnom. 20 A

This feature is available in software revision 9 and later.

#### NOTE

Maximum output voltage is 1.5 \* nominal, except as stated above. For hardware specifications, see separate documents.

# 5.7 Remote output

This CANopen SDO object is used to configure Remote Output.

| Index                   | Sub-index | Format | Unit | Range | Default value | Item                   |
|-------------------------|-----------|--------|------|-------|---------------|------------------------|
| 2061h                   | 01        | uint8  |      |       | 6             | Remote output function |
| The range of values is: |           |        |      |       |               |                        |
| 0: no fun               | ction     |        |      |       |               |                        |

1: alarm

- 2: charging phase
- 3: BBC (Best Battery Choice)
- 4: N/A

5: N/A

6: mains

This feature is available in software revision 11 and later.

# 5.8 Charger mode

At startup, charger sends boot-up message CAN-ID: 700h + node-ID, DLC: 1, data: 0 Charger sends heartbeat message once per second CAN-ID: 700h + node-ID, DLC: 1, data: 05h Charger sends SYNC message once per second CAN-ID: 080h, DLC: 0

Charger enters operational state automatically. Charger sends some other CAN messages related to automatic group functionality.

# 5.9 Charging parameters

| Index | Sub-index | Format | Unit | Range  | Default<br>value | Item             |
|-------|-----------|--------|------|--------|------------------|------------------|
| 2000h | 01        | uint16 |      |        | 1                | Algorithm number |
| 2000h | 02        | uint16 | Ah   | 502000 | 50               | Battery capacity |
| 2000h | 03        | uint16 |      | 650    | 12*              | Number of cells  |
| 2000h | 04        | uint16 | mA   | 065535 | 0                | Base load        |
| 2000h | 05        | uint16 | mOhm | 099    | 0                | Cable resistance |

These CANopen SDO objects are used to configure charging parameters.

\* Default number of cells is set according to nominal voltage of the charger. For more details, see chapter "Charging parameters" - number of cells.

These settings are nonvolatile.

# 5.10 Measurements or monitoring

In software revision 7 and later, measurements are available via power supply mode messages, which work also in charger mode. See chapter "power supply mode".

In software revision 11 and later, charging can be monitored via CAN Status messages. For details of CAN messages, see document 3914008 – chapter "CAN Status". Note, parallel operation with CAN Status enabled is not supported. CAN Status messages can be enabled:

- using front panel, see chapter "Editing charging configuration".

- using CAN message, see chapter "Setting mode via CAN".

# 5.11 Fixed power supply mode

In this mode, charger outputs power immediately after startup. For defining power output, two CANopen SDO objects are used:

| Index | Sub-index | Format | Unit | Range | Default<br>value | Item     |
|-------|-----------|--------|------|-------|------------------|----------|
| 2001h | 01        | uint32 | mV   | 0max* | nom**            | UdcLimit |
| 2001h | 02        | uint32 | А    | 0max* | max*             | IdcLimit |

\* Maximum output of the power version

\*\* Nominal voltage of the power version

#### NOTE

Values are nonvolatile, automatically written to flash. Therefore, for long lifetime, avoid sending excessive amounts of these messages. Configuration item IdcLimit applies also in other operation modes. See "Configurable items" - "IdcLimit".

Example messages:

| CAN-ID | DLC | Data (hex)              | Comment        |
|--------|-----|-------------------------|----------------|
| 601h   | 8   | 23 01 20 01 C0 5D 00 00 | U set 24000 mV |
|        |     |                         |                |

| CAN-ID | DLC | Data (hex)              | Comment    |
|--------|-----|-------------------------|------------|
| 601h   | 8   | 23 01 20 02 0A 00 00 00 | I set 10 A |

# 5.12 Protocol power supply mode

This power supply mode uses CANopen PDO protocol.

After startup, charger is in pre-operational state. Charger sends boot-up message CAN-ID: 700h + node-ID, DLC: 1, data: 0. Charger sends heartbeat message once per second CAN-ID: 700h + node-ID, DLC: 1, data: 7Fh. It is recommended to wait couple of seconds after bootup messages before attempting to

communicate.

Set charger to operational state by sending *start remote node* message. CAN-ID: 000, DLC: 2, data[0]: 1, data[1]: node-ID

For example:

| CAN-ID | DLC | Data (hex) | Comment                      |
|--------|-----|------------|------------------------------|
| 000h   | 2   | 01 01      | start device with node-ID 01 |

Then, charger sends heartbeat message once per second.

CAN-ID: 700h + node-ID, DLC: 1, data: 05h.

## NOTE

Charger sends some extra messages during startup and change of operational state. Without SYNC message, charger returns to pre-operational mode after 2...3 seconds. This applies to SW revision 9. Earlier SW revisions stay in operational mode for unlimited time.

## 5.12.1 Power output

For power output, three CANopen PDO messages are needed from CAN controller to charger.

#### 1) Voltage and current setting

CAN-ID: 200h + node-ID, DLC: 8, data[0-3]: voltage in Volts, data[4-7]: current in Amperes. Numeric format: IEEE-754 single precision floating point, 32 bit.

#### NOTE

The little endian byte order of CANopen.

Example message:

| CAN-ID | DLC | Data (hex)              | Comment                  |
|--------|-----|-------------------------|--------------------------|
| 201h   | 8   | 00 00 10 42 00 00 20 42 | Uset 36.0 V, Iset 40.0 A |

2) Power setting

CAN-ID: 300h + node-ID, DLC: 8, data[0-3]: power in Watts, data[4-7]: not used, set to 0. Numeric format: IEEE-754 single precision floating point, 32 bit.

Example message:

| CAN-ID | DLC | Data (hex)              | Comment     |
|--------|-----|-------------------------|-------------|
| 301h   | 8   | 00 80 89 44 00 00 00 00 | Pset 1100 W |

#### 3) SYNC

| CAN-ID | DLC | Data (hex) | Comment                   |
|--------|-----|------------|---------------------------|
| 080h   | 0   | -          | Also message with counter |
|        |     |            | byte is valid.            |

Period of one second is recommended. If these messages are not received for some seconds,

power output is switched off.

## ΝΟΤΕ

Configuration item IdcLimit applies in protocol power supply mode.

# 5.12.2 Measurements

In operational state, sending sync produces two PDO messages of measurement data as response.

#### 1) Voltage and current

CAN-ID: 180h + node-ID, DLC: 8, data[0-3]: voltage in Volts, data[4-7] current in Amperes. Numeric format: IEEE-754 single precision floating point, 32 bit.

For example:

| CAN-ID | DLC | Data (hex)              | Comment                              |  |  |
|--------|-----|-------------------------|--------------------------------------|--|--|
| 181h   | 8   | B1 88 C3 41 82 01 F0 41 | Umeas 24.441733 V, Imeas 30.000736 A |  |  |

#### 2) Power

CAN-ID: 280h + node-ID, DLC: 8, data[0-3]: power in Watts, data[4-7]: (reserved). Numeric format: IEEE-754 single precision floating point, 32 bit.

For example:

| CAN-ID | DLC | Data (hex)              | Comment           |
|--------|-----|-------------------------|-------------------|
| 281h   | 8   | F4 4A 37 44 12 00 00 00 | Pmeas 733.17114 W |

# 5.13 Power supply mode

Power supply mode provides close CAN remote control compatibility to PAP3200/CAN product family. This mode is available in software revision 7 and later.

# 5.13.1 Power output

These CANopen SDO objects are used to set power output:

| Index | Sub-index | Format | Unit | Range | Default value | Item |
|-------|-----------|--------|------|-------|---------------|------|
| 2401h | 01        | uint32 | mV   | 0max* | _**           | Uset |
| 2401h | 02        | uint32 | mA   | 0max* | _**           | lset |

\* Maximum output of the power version.

\*\* Default Uset and Default Iset are used as startup values, see below.

These settings are volatile.

There is no separate on/off setting. Setting Iset to zero switches output off.

After startup, voltage and current settings are zero by default. These settings can also be set to non-zero values. Without remote control, charger then outputs power same way as a power supply with fixed U and I values.

| Index | Sub-index | Format | Unit | Range | Default value | Item         |
|-------|-----------|--------|------|-------|---------------|--------------|
| 2401h | 06        | uint32 | mV   | 0max* | 0             | Default Uset |

|--|

\* Maximum output of the power version. These settings are nonvolatile.

# 5.13.2 Measurements

| Index | Sub-index | Format | Unit   | Range      | Default value | Item           |
|-------|-----------|--------|--------|------------|---------------|----------------|
| 2402h | 01        | uint32 | mV     | 0max       | -             | Uact, measured |
|       |           |        |        |            |               | output voltage |
| 2402h | 02        | uint32 | mA     | 0max       | -             | lact, measured |
|       |           |        |        |            |               | output current |
| 2402h | 06        | int32  | 0.1 °C | -50+150 °C | -             | Internal       |
|       |           |        |        |            |               | temperature    |

These messages work also in other modes.

# 5.13.3 CAN safety timer

If a new Uset/Iset message from CAN controller is not found within a time interval (it is assumed that CAN control is lost), active Uset and Iset values are replaced by Default Uset and Default Iset values. Setting CAN safety timer to zero means this feature is not active.

| Index | Sub-index | Format | Unit | Range | Default value | Item                  |
|-------|-----------|--------|------|-------|---------------|-----------------------|
| 2401h | 0Bh       | uint8  | S    | 0255  | 0 (off)       | CAN safety timer time |
|       |           |        |      |       |               | interval              |

This setting is nonvolatile.

# 5.13.4 Power supply mode example

After startup, charger sends heartbeat once/second. The data is 7Fh, which hints that device is in pre-operational state. Despite this, there is no need to send *start node* message to output power. Minimum messages to output power in power supply mode are Uset and Iset.

| #  | Time s |    | ID   | DLC | Data                    | Notes          |
|----|--------|----|------|-----|-------------------------|----------------|
| 1  | 2.208  | Tx | 071D | 1   | 00                      | bootup message |
| 2  | 2.210  | Tx | 009D | 8   | 00 00 00 00 00 00 00 00 |                |
| 3  | 3.207  | Tx | 071D | 1   | 7F                      | heartbeat      |
| 4  | 4.207  | Tx | 071D | 1   | 7F                      |                |
| 5  | 4.984  | Rx | 061D | 8   | 22 01 24 01 10 27 00 00 | Uset 10 000 mV |
| 6  | 4.987  | Tx | 059D | 8   | 60 01 24 01 00 00 00 00 | response       |
| 7  | 5.207  | Tx | 071D | 1   | 7F                      |                |
| 8  | 6.206  | Tx | 071D | 1   | 7F                      |                |
| 9  | 6.596  | Rx | 061D | 8   | 22 01 24 02 88 13 00 00 | lset 5000 mA   |
| 10 | 6.599  | Tx | 059D | 8   | 60 01 24 02 00 00 00 00 | response       |
| 11 | 7.206  | Tx | 071D | 1   | 7F                      |                |
| 12 | 8.205  | Tx | 071D | 1   | 7F                      |                |
| 13 | 9.205  | Tx | 071D | 1   | 7F                      |                |

Here is a CAN bus log from startup to power output:

# 5.13.5 Robust series and PAP3200/CAN – power supply mode differences

#### SDO download message

First byte "nes" bits (see CiA 301 7.2.4.3.3) need careful setting in Robust series. PAP3200 accepts any alternative for first byte, even a non-correct one. For Robust, they must indicate correct data length, except also 22h as first byte is accepted for four bytes data length.

#### **LED indication**

PAP3200/CAN has yellow constantly on. Robust sets big yellow on when power output is on.

#### **High internal temperature**

PAP3200/CAN shows red color in its sole LED, Robust shows steady red and blinking yellow. The temperature limits for showing alarm and switching output off, vary somewhat between power versions. Operating charger within environmental specification ensures internal temperature low enough.

#### **Periodic CAN messages**

PAP3200/CAN does not send heartbeat. This might be changed in future SW revisions. Robust sends heartbeat CAN-ID:700h + node-ID, DLC: 1, data:7Fh, once per second by default.

#### **Event related CAN messages**

Robust sends some extra messages, for example at startup CAN-ID 800h + node-ID, DLC: 8, data 00 00 00 00 00 00 00.

#### **Bootup CAN messages**

PAP3200/CAN sends two bootup messages, Robust only one.

For example:

|         | CAN-ID | DLC | Data | CAN-ID | DLC | Data |
|---------|--------|-----|------|--------|-----|------|
| PAP3200 | 71Dh   | 1   | 01   | 71Dh   | 1   | 00   |
| Robust  | 71Dh   | 1   | 00   |        |     |      |

The first bootup message from PAP3200/CAN uses fixed node-ID of 1Dh and fixed bit rate 125 kbit/s. The second bootup message uses configured node-ID and bitrate. PAP3200/CAN bootup messages might be changed in future SW revisions.

It is recommended to wait couple of seconds after bootup messages before attempting to communicate.

## **CAN** safety timer

PAP3200/CAN safety timer can be kept inactive with any message with correct node-ID. Robust requires Uset or Iset message.

#### CAN node-ID

PAP3200/CAN node-ID is accessed using OD index 5FFFh. Robust node-ID can be accessed same way in SW revision 7 and later. OD index 2057h works in all Robust SW revisions.

Changed node-ID is active after restart in PAP3200/CAN, immediately (after response) in Robust.



# 6. Connections

Mains cable of Robust chargers is typically terminated to European style schuko plug. Various lengths are available.



DC cables of Robust chargers typically:

- have cross sectional conductor area 6, 10, 16 or 25 mm<sup>2</sup> depending on output current

- not terminated



Various lengths are available.

Ask your supplier for alternatives. Note that system IP class can change based on selected cabling. High voltage models are intended for fixed installation and are supplied without cables by default.

Robust chargers provide optional features over a 26-pin high-density D-sub socket located in the bottom panel.



Early Robust 1100 chargers provide optional features over 4 pcs of RJ11 sockets located in the bottom panel. There are some limitations on connecting these. Not all can be connected at the same time while maintaining IP class. For details, ask your supplier or the manufacturer.







| RJ    | RJ wire | HD26 | Description                                                 |  |  |
|-------|---------|------|-------------------------------------------------------------|--|--|
| pin   | color   | pin  |                                                             |  |  |
| J23-1 | black   | 4    | LED green anode, 10mA current source                        |  |  |
| J23-2 | red     | 22   | LED common cathode, connected to battery minus <sup>H</sup> |  |  |
| J23-3 | green   | 14   | LED red anode, 10mA current source                          |  |  |
| J23-4 | yellow  | 5    | LED yellow anode, 10mA current source                       |  |  |
| J22-1 | black   | 2    | Sense plus (+) <sup>H</sup>                                 |  |  |
| J22-2 | red     | 12   | Battery temperature compensation (-). Sensor consists of    |  |  |
|       |         |      | two Philips/NXP KTY83-120 sensors connected in series.      |  |  |
| J22-3 | green   | 3    | Battery temperature compensation (+)                        |  |  |
| J22-4 | yellow  | 20   | Sense minus (-) <sup>H</sup>                                |  |  |
| J21-1 | black   | 19   | Remote input (+) *                                          |  |  |
| J21-2 | red     | 1    | CAN-bus Hi *                                                |  |  |
| J21-3 | green   | 10   | CAN-bus Lo *                                                |  |  |
| J21-4 | yellow  | 11   | Remote input (-) *                                          |  |  |
| J24-1 | black   | 26   | Remote output relay, Common 60 V 0.25 A                     |  |  |
| J24-2 | red     | 18   | Remote output relay, Normally Open                          |  |  |
| J24-3 | green   | 9    | Remote output relay, Normally Closed                        |  |  |
| J24-4 | yellow  |      | Not connected                                               |  |  |
|       |         | 7    | Isolated output ground * (same ground as in pin 11)         |  |  |
|       |         | 8    | Detect <sup>H</sup>                                         |  |  |
|       |         | 17   | 14 V output <sup>H</sup> (optional feature)                 |  |  |
|       |         | 25   | Isolated output +5 V 50 mA *                                |  |  |

\* CAN bus signals, remote input and isolated 5 V output operate from supply, which is galvanically isolated from charger DC power output. This output is overload protected.

CAN bus is using internally weak split termination (2 \* 1 kOhm, 100 nF) to isolated output ground.



Since October 2018, 120 Ohm termination resistor is also mounted by default. Optionally, it can be left unmounted.

<sup>H</sup> Notes for high-voltage (96 V nominal and above) versions:

Different from low voltage versions, DC power output is isolated from all other connections. Pin 22 is isolated from battery minus and provides ground for 14 V output and Detect-signal. Voltage sense feature is not available.

Detect is an alternative Remote input.

It outputs about 14 V when not loaded, 8 ... 10 mA when activated by shorting to battery minus. This feature has been added to Robust chargers during year 2018.

14 V (non-regulated) output is optional feature, must be specified when ordering. 400 mA surge can be output for one second, this is overload protected. 10 mA can be output continuously. This output is not galvanically isolated from battery minus (except in high-voltage versions). This feature has been made available to Robust chargers in year 2019. This output withstands 60 V voltage in chargers manufactured 2020 May or later, 30 V earlier.

Before inserting D-sub connector, make sure hex nuts in the charger are properly tightened. Recommended torque for D-sub screws is 0.5 Nm.



For available cables to utilize these optional features, see chapter "Options and accessories".

# 7. Options and accessories

Options and accessories in addition to those listed here might be available. Ask your supplier.

# 7.1 Radio module

Robust series chargers can be equipped at the factory with optional internal radio module. Radio module enables short range communication with other chargers and battery monitoring units. Also, communication to PC-computer via USB radio dongle is possible. The radio functionality of Robust series and Access series is compatible.

Microsoft Windows<sup>™</sup> software "Access Service Tool" is convenient tool for:

- configuring chargers and the system
- reading logs and statistical data from charger
- monitoring charger operation in real time

For more information on using the radio functionality, see Access documentation. Windows is a trademark of Microsoft Corp.

# 7.2 Battery temperature sensor and voltage sense

In charger mode, battery temperature compensation is automatically used, if sensor is connected and selected algorithm has temperature compensation defined.

In charger mode, DC cable voltage loss compensation can be done programmatically using charging parameter "cable resistance". Compensation can also be done by hardware using sense wires. This method works in all modes.



Length 2.5 m to first joint, total 3.2 m, IP67 at charger end, IPxx at fuse holder, other joints molded. The black rectangular piece is temperature sensor and is attached externally to the battery pack. Black and red ring terminals are connected to - and + poles. Positive wire also has a fuse (3 A, type ATO). Also, 5 m version is available.

# 7.3 CAN cable

CAN cable for Robust chargers is as standard 3 m in length, IP67, not terminated. Not terminated both in terms of second connector and line impedance.



| HD26M pin | Wire color | Signal |
|-----------|------------|--------|
| 10        | white      | CAN_L  |
| 1         | brown      | CAN_H  |

# 7.4 CAN cable with 9-pin D-sub socket

This cable fits directly to several commercially available CAN interfaces. Cable length 1.5 m.



| HD26M pin | Signal | D9F pin |
|-----------|--------|---------|
| 10        | CAN_L  | 2       |
| 1         | CAN_H  | 7       |

# 8. Dimensions



Approximate dimensions in mm.

Height excluding cable clamps.

Weight including standard cables, excluding accessories and package.

| Model               | Height | Width | Depth | Weight kg |
|---------------------|--------|-------|-------|-----------|
| Robust 888 passive  | 190    | 230   | 80    | 3.0       |
| Robust 888 fan      | 230    | 230   | 80    | 3.2       |
| Robust 1100 passive | 290    | 230   | 110   | 5.8       |
| Robust 1100 fan     | 330    | 230   | 80    | 3.9       |
| Robust 2300 passive | 330    | 230   | 110   | 8.5       |
| Robust 2300 fan     | 370    | 230   | 80    | 6.1       |
| Robust 3000 fan     | 370    | 230   | 80    | 6.7       |